import pandas as pd import matplotlib.pyplot as plt from adjustText import adjust_text import sys def real_mode(m): if m == "mixed": return "Mixed (70% Get, 30% Insert)" elif m == "get": return "Random Get" elif m == "scan": return "Sequential Scan" return m.capitalize() name = sys.argv[1] prefix = name.split(".")[0] # 读取数据 df = pd.read_csv(f"./{name}") # 按 mode 分组 modes = df["mode"].unique() for mode in modes: plt.figure(figsize=(16, 9)) subset = df[df["mode"] == mode] # 按 key_size/value_size 分组 key_value_combinations = subset.groupby(["key_size", "value_size"]) texts = [] for (key_size, value_size), group in key_value_combinations: label = f"key={key_size}B, val={value_size}B" x = group["threads"] y = group["ops"] # 绘制折线 line, = plt.plot(x, y, marker="o", label=label) # 添加文本标签 for xi, yi, ops in zip(x, y, group["ops"]): texts.append( plt.text(xi, yi, f"{int(ops)}", color=line.get_color(), fontsize=12) ) # 自动调整文本位置 adjust_text(texts, arrowprops=dict(arrowstyle="->", color='gray')) # 设置图表样式 plt.title(f"{prefix.upper()}: {real_mode(mode)}", fontsize=16) plt.xlabel("Threads", fontsize=14) plt.ylabel("OPS", fontsize=14) plt.grid(True, linestyle="--", alpha=0.6) plt.legend() plt.tight_layout() plt.savefig(f"{prefix}_{mode}.png") plt.close()